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Short Papers

Effective Impedance of a Load Filling a
Circumferential Slot in a Coaxial Transmission Line

A. DAVID WUNSCH, MEMBER, IEEE

Abstract — A terminal load uniformly filling a narrow slot placed in the
outer conductor of a coaxial transmission line presents a certain effective
impedance to TEM waves propagating in the line. The relationship be-
tween this value of impedance and the voltage-to-current ratio at this load
is established. The two are not necessarily equal. A numerical example is
considered.

I. INTRODUCTION

Occasionally, the load terminating a sinusoidally driven coaxial
transmission line is uniformly distributed around a circumferen-
tial electrically narrow band located in the outer conductor of the
system. Such an arrangement is shown in Fig. 1. The nominal
impedance of the load, assumed here to be known a priori, is
natorally defined as Z, =V, /1, where V,, as shown in Fig. 1, is
the phasor voltage across the load, while 7, is the phasor current
flowing into it. This impedance might represent the loading
caused by a radiating slot cut in the outer conductor of a coaxial
line in order to form an antenna, as shown in Fig. 2. A boundary
value solution of the fields exterior to the line could yield Z,.
Gaps are also sometimes placed in the outer conductor of a
coaxial line to form a leaky feeder communication system, as
described, for example, by Hill and Wait in [1] and [2].

Elementary transmission theory establishes that, for a lossless
transmission line of characteristic impedance Z,, the impedance
observed at a distance L from a terminating load of impedance
Zr is
Zy + jZytan( kL)
Zy+ jZytan( kL)

Z(L) =7, M
where k is the phase constant of the line. The impedance Z, of
the circumferential load cannot, in general, be substituted for Z,
in the above formula since Z, is not the impedance which the
load presents to transmission line mode (TEM) waves. The field
surrounding the circumferential load is a complicated one involv-
ing not only the TEM mode but higher order evanescent TM
modes as well.

II. ANALYSIS

To determine the relationship between Z(L) and Z,, we
consider a section of transmission line of length L, shown
schematically in Fig. 3. The right end of this section is connected
to a voltage source and a series load Z, matched to the transmis-
sion line. The left end of this section is identical to the load
terminating the line in Fig. 1. The voltage appearing across Z, is
V,=—1,Z,. Combining this with the standard equations for a
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linear passive two-port network, we have

|4
_7=I1=YHV1+Y12V2
A

(22)
(2b)

L =Y, +Y,V,.

Solving these simultaneously, we find

& Z ! 3
P=Z=y 3
where
I,12);212,4
Y, =Yy —— 4
2P 1+ zyy, ()

The impedance Z,, (see Fig. 3) seen looking left into the line
between terminals f and g is given by Z, — Z,. A knowledge of
Yy, ¥y, and Yy, =Y, will yield Z,.

To determine these coefficients, we consider the infinite coaxial
transmission line shown in Fig. 4. The generator should be
regarded as distributed throughout a gap in the outer conductor
described by r=»5b, |x|<d. The electric field in this gap is
assumed uniform and is given by E_= —V}, /2d. Recall that d is
the width of the gap in Fig, 1.
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Fig. 2. An arrangement creating a circumferential load.
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Fig. 3. A scheme for analyzing the problem.

A similar configuration has been considered by Schelkunoff
[3], who places the generator in a gap in the inner conductor,
r = a. We may modify his solution to solve the present problem,
The result, with some changes from Schelkunoff’s notation, is
that the phasor current flowing on the inner surface of the
conductor, r=b, is

no(y)

JkbVy +sin({d) 1 ‘
(=t [TRE o P e (9)
\/—: —e (k*=¢2)"* do()

where ’
no(y) =Jl(7b)No(Ya) — Jo(ya) Ny (vb) (62)
do(v) = Jo(vb) No(va) — Jo(va) Ny (vb) (6b)

k=2m/\= w‘/ﬁz is the phase constant for the transmission line,
y=(k?—¢*)"?, and J, and N, are Bessel and Neumann func-
tions of order n.
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Fig. 4. Infinite coaxial line driven in the outer conductor.

The voltage between the conductors, defined as an integral of
the radial electric field:

V(x) =j:E,(r, x) dr

is found to be

2k ¢ O

Since we assume d /A <1, or kd <1 (the gap is electrically very
narrow), we see from (7) that a voltage wave

)
V(x) =7e‘f"", x>d (8)
is radiated outward from the source.

To evaluate I (x) in (5) we employ residue calculus. Using
small argument expansions for the Bessel functions in (6), we
find that the integrand has a simple pole for { = + k. The residue
at k makes a contribution to the current wave moving in the

positive x direction of

—ykx
Ve

Ikx(x) =7 ZO

forx>d. (9
Here Z,=(1/27)/p/€ In(b/a) is the characteristic impedance
of the transmission line. Again, we have used kd <1. The
residue at — k leads to a similar expression valid for x < — d.
The remaining portion of the current is associated with all the
poles of n, /d, in (5) except those at { = + k. If the outer radius
b of the coaxial line satisfies kb < 2.40, then all these poles lie on
the imaginary axis in the complex { plane. The contribution to
the current from the residue at each pole is an attenuated wave.
Considering only x > d, we are concerned only with those resi-
dues at poles on the negative imaginaty axis. Calling these poles

¢, (n=1,2,---,00), the total contribution to the current is
®©  2xkbV, sin(dg,) ny(y,)
L.(x)= - “er x>d (10
D=2 JEa n) ()
€
where
o= Jvi - K. (11)

The quantity v, is a solution of

To (1, b) Ny (¥,a) = Jo(v,a) No(,0) =0 (12)
and
DO(Yn) = b[Jl(erb) NO(Yrra) - JO(Yna)Nl(an)]

+ a[JO(Y»Ib)Nl(Yna) - JI(Yna)NO(an)]' (13)
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The roots of (12) have been tabulated [4]. A very good approxi-
mation, when 1< b/a <5, is that
nw

n=1,2’...

n217'2
Gm- ) ——— k2
N (b-ay

Typically, kb < 1. Thus, (15) simplifies to

nw

b—a (16)

which, when substituted in (10), reveals a series of highly at-
tenuated waves varying as e~ "™*/(*~9_ The total current on the
inside of the outer conductor of the coaxial line is

I.\(x) = Ikx(x) + Iex(x)’

where I,, and fex are defined in (9) and (10).
Returning to the problem of finding Y;,, Y,,, and ¥, of (4),
we notice, referring to Fig. 3 and equation (2), that ¥, =
(15 / V2)ly, —o. From ¢lementary transmission line theory, we find

1 1
Y2 Zy 1+ jtan( kL) (18)
provided kd <1 and L>d.

Let the load Z, in Fig. 3 (and Fig. 1) be replaced by a voltage
source ¥;. We now have Y5, = (5, /W))|y,_o. Our discussion of
the infinite line in Fig. 4 showed that the portion of the current
I, (x) in (17) is highly attenuated. Thus, the load Z, in Fig. 3
would, provided L exceeds roughly 2(b — a), be exposed only to
the transmission line mode of propagation.

With the load Z, in Fig. 3 and 1 replaced by generator V;, an
application of the method of images yields a configuration elec-
trically equivalent to Fig. 4. Notice that ¥, = 2. Using this in

(14)

so that

(15)

Si=—1J

x>d

(17)

.01 .02 05 h§ .2 *5 L

Graph of the function S(4, ¢) versus A for c=35and c=1

(8) and the definition of ¥,,, we obtain

— e /KL

Y= Z,

=Y.

(19)

To obtain Yy, = (I, /V1)|y,—o We again employ the method of
images and the configuration of Fig, 4. We have

1.(d)
Uy

where I, is found from (17), (10), and (9). Thus,

(20)

1
Y, =— + jB (21)
‘ 11 ZO g
where
inh nwd
z (€ (b-a)" (b—a) no(¥,) _ nm
B, = ~ 4kb Thoa. (22
¢ nz=:1 B nd n’ Dy(v,) ©r (22)
We have used (16) and taken kd < 1.
The substitution of (21), (19), and (18) into (4) yields
ZA
———— 4+ jZ tan( kL
17 jz,8, /%K)
Z, =2, 7] +Z,. (23)
o+ j———t kL
°" 1Y jz,B, an(KL)

This is the impedance seen by the generator ¥, in Fig. 3.
Subtracting Z, from Z,, we obtain Z;,, the impedance seen
between terminals f and g when looking to the left. A com-
parison of Z, with (1) shows that the load terminating the
left end of the transmission line in Fig. 3 is not simply Z, but
Z,/(1+ jB,Z,), which is the impedance of Z, in parallel with
the admittance jB, defined in (22). This admittance is associated
with the evanescent modes surrounding the gap of width 4.
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For numerical calculation of B,, we rewrite (22) as

2 kb
B =——“S(A,c)

g g |
€

(24)
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The approximate values (16) and (14) are used.

Fig. 5 shows the results of a digital computer evaluation of
S(A,c) for ¢=5 1f c=b/a—1 (with A kept finite), then
S(4, ¢) tends to

o 1— e—ZmrA 1 |:,”2 0 e—2n77A

S(A71)= Z 3 ?_ Z

A =X = :l (26)

n=1 n2
An approximate evaluation of this series can be made, for various
A, on a programmable pocket calculator. S(A,1) has been plotted
on Fig. 5. Notice how close in value are the curves S(4,1) and
S(A,5). Other curves for S(4,c), where 1< ¢ <35, lie in the
narrow band between the two curves shown in Fig. 5. Because
of the insensitivity of S(A, ¢) to variations in b/a, it is a rea-
sonable approximation to use S(A,1) for S(A,c) whenever
1<b/a<5s.

For A <0.01, there is a useful asymptotic expression for (26):

S(A,1) ~2wln(—e—). (27)

27A
The error obtained in using (27) to approximate (25b) is about
1.7 percent when A =0.01, b/a =5, and shrinks with shrinking
Aorb/a.

III. NUMERICAL EXAMPLE

A lossless line has b=1 ¢cm and b/a=3. For the material
between the conductors, p = p, and € = 2.24 ¢,. The characteris-
tic impedance is Z, = 44.0 Q. Let a load of Z, = 44 Q be placed
in a gap of width d described by A=d/(b—a)=0.1. A com-
puter evaluation of (25b) gives S$(0.1,3) =10.29 (note that (26)
would yield 9.20). If f =600 MHz, we have, from (24), B, = 4.89
X103 ©. This capacitive susceptance in parallel with Z, vyields
an effective load impedance of 42.05— j 9.05 &, which is mod-
erately different from Z,.

In this example, the width of the gap is 0.067 cm, which is
2,/1000 of the wavelength A in the line. One should not use the
procedure described here unless the gap is very narrow compared
to A, as the theory fails to account for any distribution of the
load along the line but assumes it to be concentrated at one
location.
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Depth of Penetration of Fields from Rectangular
Apertures into Lossy Media

ERIK CHEEVER, JONATHAN B. LEONARD,
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Abstract — A widely used device for biomedical applications of micro-
wave energy is the dielectric-loaded waveguide operating in the TE,,
mode. We have calculated the (1/¢) energy penetration depth from such
antennas, modeled as rectangular apertures radiating into a lossy medium
with dielectric properties resembling those of tissue. The results are
presented in nondimensional form from which the characteristics of practi-
cal antennas can be estimated. Depending on the dielectric properties of
the medium and the size of the aperture, the effective penetration depth
can be limited by either the aperture size or the plane-wave penetration
depth; practical antennas fall between these two extremes. Experimental
results confirm the calculations.

I. INTRODUCTION

Several medical applications of microwave energy have been
developed that heat tissue (diathermy and hyperthermia) or mea-
sure tissue temperature from the microwave energy that is pas-
sively emitted from the body (radiometry). The simplest antenna
for such purposes (and one that is widely used) is a rectangular
waveguide placed against the surface of the body [1]-[3].

An important consideration is the effective depth of heating or
sensing. The field patterns in the tissue beneath an aperture can
be calculated using well-established theory [4], [5]. However,
these calculations are complex, and in discussing such appli-
cations investigators frequently cite the plane-wave penetration
depth in the tissues. In contrast, the heating or sensing occurs
primarily in the near field of the antenna with a sensitivity
function that depends strongly on both the antenna geometry
and the material properties of the medium. It is apparent that the
effective depth of heating or sensing can be far less than the
energy penetration depth of plane waves, We report the penetra-
tion depth of energy from rectangular apertures in nondimen-
sionalized form that can be easily applied to a variety of situa-
tions. This is a generalization of results previously reported by
Turner [6].
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