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Short Papers

Effective Impedance of a Load Filling a

Circumferential Slot in a Coaxial Transmission Lhe

A. DAVID WUNSCH, MEMBER,IEEE
i

Abstract —A terminal load uniformly filling a narrow slot placed in the

outer conductor of a coaxial transmission line presents a certain effective

impedance to TEM wavespropagating in the line. The relationship be-

tween this value of impedance and the voltage-to-cnrrent ratio at this load

is established. The two are not necessarilyequal. A numerical example is
considered.

I. INTRODUCTION

Occasionally, the load terminating a sinusoidally driven coaxial
transmission line is uniformly distributed around a circumferen-
tial electrically narrow band located in the outer conductor of the
system. Such an arrangement is shown in Fig. 1. The nominal
impedance of the load, assumed here to be known a priori, is

naturally defined as Z~ = VA/Z~, where VA, as shown in Fig. 1, is
the phasor voltage across the load, while 1A is the phasor current
flowing into it. This impedance might represent the loading
caused by a radiating slot cut in the outer conductor of a coaxial
line in order to form an antenna, as shown in Fig. 2. A boundary
value solution of the fields exterior to the line could yield Z~.
Gaps are also sometimes placed in the outer conductor of a
coaxial line to form a leaky feeder communication system, as
described, for example, by Hill and Wait in [1] and [2].

Elementary transmission theory establishes that, for a lossless
transmission line of characteristic impedance 20, the impedance
observed at a distance L from a terminating load of impedance
Z~ is

ZT + jzo tan(w)
Z(L) = Z.

20+ jZ, tan( kL)
(1)

where k is the phase constant of the line. The impedance Z~ of

the circumferential load cannot, in general, be substituted for ZT

in the above formula since Z~ is not the impedance which the

load pfesents to transmission line mode (TE~ waves. The field

surrounding the circumferential load is a complicated one involv-

ing not only the TEM mode but higher order evanescent TM

modes as well.

II. ANALYSIS

To determine the relationship between 2(L) and Z~, we
consider a section of transmission line of length L, shown
schematically in Fig. 3. The right end of this section is connected
to a voltage source and a series load 20 matched to the transmis-
sion line. The left end of this section is identical to the load
terminating the line in Fig. 1. The voltage appearing across Z~ is
VI = – II Z~. Combining this with the standard equations for a
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Fig. 1. Configuration of the problem.

linear passive two-port network, we have

VI
— = J1= Yllvl + Y~*v*
2A

(2a)

12 = Y&V1 + Y22V2 . (2b)

Solving these simultaneously, we find

~
—=22=+
12 2

(3)

where

Y12Y21zA
Y2 = Y*2 –

1+ ZAY1l “
(4)

The impedance Z,g (see Fig. 3) seen looking left into the line
between terminals f and g is given by Zz – 20. A knowledge of
Yzz, Yll, and Y12= Y21will yield Zfg.

To determine these coefficients, we consider the infinite coaxial
transmission line shown in Fig. 4. The generator should be
regarded as distributed throughout a gap in the outer conductor
described by r = b, 1x1 < d, The electric field in this gap is

assumed uniform and is given by EX = – V. /2d. Recall that d is

the width of the gap in Fig. 1.
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Fig. 4. Infirrite coaxial line driven in the outer conductor.

The voltage between the conductors, defined as an integral of
the radial electric field:

V(x) =~alir(r,x) dr

is found to be
%iZd- Ii.

~ sin(kd)
V(x) =~~e-Jkx, x>d. (7)

Since we assume d/A<< 1, or kd <<1 (the gap is electrically very
narrow), we see from (7) that a voltage wave

V(x) =~e-Jkx, x>d (8)

is radiated outward from the source.
To evaluate 1X(x) in (5) we employ residue calculus. Using

small argument expansions for the Bessel functions in (6), we
find that-the integr&d has a simple pole for ( = + k. The residue

Fig. 2. An arrangementcreatinga Circumferentialload. at k makes a contribution to the current wave moving in the

I----L !

Fig. 3. A schemefor analyzing the problem.

A similar configuration has been considered by Schelkunoff
[3], who places the generator in a gap in the inner conductor,
r = a. We may modify his solution to solve the present problem.
The result, with some changes from Schelkunoff’s notation, is
that the pha,ior current flowing on the inner surface of the
conductor, r = b, is

jkbVO +~ sin(fd) 1

J
Ix(x)=y _ — ‘0( ~) ~-j{. d{ (5)

f

co {d (k’ -~’)’z’ do(y)

c

positive x direction of

J,70 e-jkx

Zkx(x) =~j- for x ad.
o

(9)

Here Z.= (1/27r)~ ln(b/a) is the characteristic impedance
of the transmission line. Again, we have used kd <1. The

residue at – k leads to a similar expression valid for x < – d.

The remaining portion of the current is associated with all the

poles of no/do in (5) except those at f = + k. If the outer r&iiu$
b of the coaxial line satisfies kb <2.40, theh all these poles lie on
the imaginary axis in the complex ( plane. The contribution to
the current from the residue at each pole is an attenuated wave.
Considering only x > d, we are concerned only with those resi-
dues at poles on the negative imaginaiy axis. Calling these poles
{n (n=l,2,..., m), the total contribution to the current is

where

~,,= – j~~. (11)

where
The quantity y,, is a solution of

no(yj =J1(yb)tio(ya) -Jo(ya)N1(yb) (6a)
Jo(Yn~)~o(Y~a) –Jo(Y~a)No(Y~b) ‘O

dO(Y) =JO(Yb)NO(Ya) –JO(Ya)NO(Y~)

(12)

(6b) and

k = 2Tr/A = u@ is the phase constant for the transmission line, Do(y),) =b[Jl(y,,b) iVO(y,,a) -JO(y.a)M(Y.b)]
y = (k’ – {2 )1/2, and Jn and N. are Bessel and Neumann func-

tions of order n. + a[Jo(y,, b) N,(yna) –Jl(y~a)NO(y~b)] (13)
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Fig 5, Graph of the function ,S(A, c) versus A for c = 5 and c = 1

The roots of (12) have been tabulated [4]. A very good approxi- (8) and the definition of Y21, we obtain

mation, when 1< b/a <5, is that ~–]kL
n7r Y21 = = = Y12 . (19)

l’.~~j ~=l,z,... (14) Z.

so that

/

~2r2

–k2.
“’=-J (b-a)’

Typically, kb <<1. Thus, (15) simplifies to

(15)

(16)

which, when substituted in (10), reveals a series of highly at-

tenuated waves varying as e– n“-x/( b–‘), The totaf current on the

inside of the outer conductor of the coaxial line is

J.,(x) =~kx(x)+~,x(x), x>d (17)

where IkA and l,X are defined in (9) and (10).
Returning to the problem of finding Yll, Y22, and Y12of (4),

we notice, referring to Fig. 3 and equation (2), that Y22=

(1z / h) IV,=0. From elementav transmission line theory, we find

1
Y22 = ~

Z. l+jtan(kL)
(18)

provided kd <<1 and L>> d.

Let the load Z~ in Fig. 3 (and Fig. 1) be replaced by a voltage

source VI. We now have Y21= (12/VI) [”, = o. Our discussion of
the infinite line in Fig. 4 showed that the portion of the current
1,, (x) in (17) is highly attenuated. Thus, the load Z. in Fig. 3
would, provided L exceeds roughly 2( b – a), be exposed only to

the transmission line mode of propagation.

With the load Z~ in Fig. 3 and 1 replaced by generator VI, an

application of the method of images yields a configuration elec-

trically equivalent to Fig. 4. Notice that V. = 2VI. Using this in

To obtain Yll = (ll/vJ ]~,.. we again employ the method of

images and the configuration of Fig. 4. We have

y =Ix(d)

11
;~

where 1, is found from (17), (10), and (9). Thus,

Yll = + + pg
o

where

(20)

(21)

{

~j+ noh)g. (2’2)(b-a)’ “ti
Bg=~ 5 4kb

~=1 P ~d n’ Do(Y. )

We have used (16) and taken kd <<1.

The substitution of (21), (19), and (18) into (4) yields

This is the impedance seen by the generator V2 in Fig. 3.

Subtracting Z. from Z2, we obtain Z,g, the impedance seen

between terminals ~ and g when looking to the left. A com-

parison of Z,g with (1) shows that the load terminating the

left end of the transmission line in Fig. 3 is not simply Z~ but

21/(1 + jBgZA ), which is the impedance of ZA in parallel with

the admittance jB~ defined in (22). This admittance is associated

with the evanescent modes surrounding the gap of width d.
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For numerical calculation of B,, we rewrite (22) as REFEP.SNCES

where

and

2 kb-
B,=; TS(A, C)

y;

A=d/(b–a), c = b/a

[1]

(24)

[2]

[3]

(25a) [4]
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(l-e-2 ''TA)(c-l)[J1(y,lb) No(yna)- Jo(y.a)N~(y,,b)]
s(A, c)= ~ *

,,=1 ~ A(~[Jl(~. b)~O(Y,, U)- JO(~,ta)~l (Y. ~)]-[Jl(~. a)~O(~. b)- JO(Y. b)~l(Y. a)])

The approximate values (16) and (14) are used.

Fig. 5 shows the results of a digitaf computer evaluation of

S(ADC) for c =5. If c = b/a ~ 1 (with A kept finite),

s(A, c) tends to

then

(26)

An approximate evaluation of this series can be made, for various
A, on a programmable pocket calculator. S(A, 1) has been plotted
on Fig. 5. Notice how close in value are the curves S( A, 1) and
s(A,5). Other curves for s(A, c), where 1< c <5, lie in the
narrow band between the two curves shown in Fig. 5. Because
of the insensitivity of S( A, c) to variations in b/a, it is a rea-

sonable approximation to use S( A, 1) for S( A, c) whenever
l< b/a<5.

For A <0.01, there is a useful asymptotic expression for (26):

()S(A,l)-2wln & .

The error obtained in using (27) to approximate

1.7 percent when A = 0.01, b/a= 5, and shrinks

A or b/a.

III. NUMERICAL EXAMPLE

(27)

(25b) is about
with shrinking

A lossless line has b = 1 cm and b/a= 3. For the materiaf
between the conductors, p = PO and c = 2.24 (O. The characteris-
tic impedance is ZO= 44.00. Let a load of Z~ = 44 Q be placed
in a gap of width d described by A = d/(b – a) = 0.1. A com-

puter evaluation of (25b) gives S(0.1, 3) = 10.29 (note that (26)
would yield 9.20). If ~ = 600 MHz, we have, from (24), Bg = 4.89
x 10-30. This capacitive susceptance in parallel with Z~ yields
an effective load impedance of 42.05 – j 9.05 Q, which is mod-
erately different from Z~.

In this example, the width of the gap is 0.067 cm, which is
2/1000 of the wavelength A in the line. One should not use the
procedure described here unless the gap is very narrow compared
to X, as the theory fails to account for any distribution of the
load along the line but assumes it to be concentrated at one
location.
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Depth of Penetration of Fields from Rectangular

Apertures into Lossy Media

ERIK CHEEVER, JONATHAN B. LEONARD,
AND KENNETH R. FOSTER, SENIORMEMBER,IEEE

Abstract — A widely used device for biomedical applications of micro-

wave energy is the dielectric-loaded wavegnide operating in the TE,0

mode. We have calculated the (l/e) energy penetration depth from such

antennas, modeled as rectangular apertures radiating into a lossy medium

with dielectric properties resembling those of tissue. The results are

presented in nondimensional form from which the characteristics of practi-

cal antennas can be estimated. Depending on the dielectric properties of

the medium and the size of the apertnre, the effective penetration depth

can be timited by either the apertnre size or the plane-wave penetration

depth practical antennas fall between these two extremes. Experimental

results confirm the calculations.

I. INTRODUCTION

Severaf medical applications of microwave energy have been

developed that heat tissue (diathermy and hyperthermia) or mea-

sure tissue temperature from the microwave energy that is pas-

sively emitted from the body (radiometry). The simplest antenna

for such purposes (and one that is widely used) is a rectangular

waveguide placed against the surface of the body [1]–[3].

An important consideration is the effective depth of heating or

sensing. The field patterns in the tissue beneath an aperture can

be calculated using well-established theory [4], [5]. However,

these calculations are complex, and in discussing such appli-

cations investigators frequently cite the plane-wave penetration

depth in the tissues. In contrast, the heating or sensing occurs

primarily in the near field of the antenna with a sensitivity

function that depends strongly on both the antenna geometry

and the material properties of the medium. It is apparent that the

effective depth of heating or sensing can be far less than the

energy penetration depth of plane waves. We report the penetra-

tion depth of energy from rectangular apertures in nondimen-

sionalized form that can be easily applied to a variety of situa-

tions. This is a generalization of results previously reported by

Turner [6].
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